Escape , capture , and levitation of matter in Eddington outbursts
نویسنده
چکیده
Context: An impulsive increase in luminosity by one half or more of the Eddington value will lead to ejection of all optically thin plasma from Keplerian orbits around the radiating star, if gravity is Newtonian and the PoyntingRobertson drag is neglected. Radiation drag may bring some particles down to the stellar surface. On the other hand, general relativistic calculations show that gravity may be balanced by a sufficiently intense radiation field at a certain distance from the star. Aims: We investigate the motion of test particles around highly luminous stars to determine conditions under which plasma may be ejected from the system. Results: In Einstein’s gravity, if the outburst is close to the Eddington luminosity, all test particles orbiting outside an “escape sphere” will be ejected from the system, while all others will be captured from their orbits onto the surface of another sphere, which is well above the stellar surface, and may even be outside the escape sphere, depending on the value of luminosity. Radiation drag will bring all the captured particles to rest on this “Eddington capture sphere,” where they will remain suspended in an equilibrium state as long as the local flux of radiation does not change and remains at the effective Eddington value.
منابع مشابه
Numerical simulations of continuum-driven winds of super-Eddington stars
We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This ‘porosit...
متن کاملEddington Capture Sphere around luminous stars
Test particles infalling from infinity onto a compact spherical star with a mildly super-Eddington luminosity at its surface are typically trapped on the “Eddington Capture Sphere” and do not reach the surface of the star. The presence of a sphere on which radiation pressure balances gravity for static particles was first discovered some twenty five years ago. Subsequently, it was shown to be a...
متن کاملGiant Outbursts of Luminous Blue Variables and the Formation of the Homunculus Nebula Around η Carinae
The observed giant outbursts of Luminous Blue Variables (LBVs) may occur when these massive stars approach their Eddington limits. When this happens, they must reach a point where the centrifugal force and the radiative acceleration cancel out gravity at the equator. We call this the Ω-limit. When stars are close to the Ω-limit, strong non-spherical mass loss should occur. This suggests a scena...
متن کاملResolved Jets and Long-Period Black Hole X-ray Novae
In this brief note we point out that the four spatially resolved relativistic jets among the 14 dynamically confirmed black hole X-ray novae are all in systems with long orbital periods. Many shorter period systems show transient radio outbursts which are attributed to jets, but these jets have not been spatially resolved. Super-Eddington accretion has been suggested as a requirement for jet fo...
متن کاملOscillations of the Eddington Capture Sphere
We present a toy model of mildly super-Eddington, optically thin accretion onto a compact star in the Schwarzschild metric, which predicts periodic variations of luminosity when matter is supplied to the system at a constant accretion rate. These are related to the periodic appearance and disappearance of the Eddington Capture Sphere. In the model the frequency is found to vary inversely with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013